
An FPGA-based Parallel Sorting Architecture for the Burrows Wheeler
Transform

José Martínez, René Cumplido, Claudia Feregrino

National Institute of Astrophysics, Optics and Electronics
Computer Science Department

Luis Enrique Erro # 1. Sta Ma. Tonantzintla
Puebla, 72840, México

{josemcr,rcumplido,cferegrino}@inaoep.mx

Abstract

Burrows-Wheeler transform (BWT) has received

special attention due to its effectiveness in lossless data
compression algorithms. However, implementations of
BWT-based algorithms have been limited due to the
complexity of the suffix sorting process applied to the
input string. Proposed solutions involve data
structures combined with hardware architectures
aimed at reducing computational complexity. However,
advanced data structures are difficult to be
implemented directly into hardware architectures as
they require sophisticated control units. In this paper
we present a novel architecture based on a parallel
sorting block to implement the BWT transform. The
proposed architecture has been implemented on a
Field Programmable Gate Array (FPGA) device
providing good performance improvements compared
with other reported implementations on FPGAs.
Results obtained show a reduction in the number of
cycles and an increase in the maximum frequency
compared with other works. FPGA implementation
results are presented and discussed.

1. Introduction

Several data compression algorithms have been
developed based on the BWT transform. By using
BWT in the data compression process it is possible to
obtain compression ratios close to the best statistical
compressors, i.e. the PPM family of algorithms [1].
BWT based compression algorithms have also to be
more efficient in terms of computational resources and
memory use [2] than PPM type algorithm, however
implementations of compression algorithm based on
BWT, either in hardware or software, still demand
large amounts of memory resources and computational
power. Hardware implementations of BWT require a

custom-built storage matrix capable of performing
shifts and rotations of the input string. The matrix
should also allow performing lexicographical sorting
of its contents.

FPGA offer a flexible platform for rapid
prototyping and implementation of the BWT
transform. The reconfigurable hardware property on
FPGAs allows easy adaptation and changes in
functional requirements. In addition, the FPGA could
be used as a first step for prototyping and synthesizing
algorithms to very large scale integration (VLSI)
technology.

Improvements of traditional merge sort and quick
sort algorithms have been proposed for software
implementations of BWT. A suffix list data structure in
proposed in [2] leads to antisequential and memory
efficient algorithms, the authors also describe a
possible architecture to a BWT-based compression
system in VLSI, although only few details are given
and no hardware results of the complete algorithm are
shown.

Direct hardware implementations of merge and
quick sort type of algorithms would require
sophisticated control units. To tackle this problem,
simpler sorting algorithms could be used. In [4],
Mukherjee et al. implement an area-efficient register-
based architecture for solving the suffix sorting
problem. In this paper, a scalable FPGA-based
architecture for the BWT transform that uses a parallel
approach to solve the suffix sorting problem is
presented.

The remainder of the paper is organized as follows:
Section 2 defines the suffix sorting problem and some
strategies to implement it. Section 3 describes the
proposed approach based on parallel sorting.
Experimental results are shown in Section 4 and
finally, conclusions and future work are presented in
Section 5.

Proceedings of the 2005 International Conference on Reconfigurable Computing and FPGAs (ReConFig 2005)
0-7695-2456-7/05-$20.00 © 2005 IEEE

2. Suffix sorting in the BWT

2.1. The suffix sorting

As mentioned, a direct implementation of the BWT
implies the use of large amounts of memory resources.
For example, an input string of length 100 would
require a matrix of 100x100 elements for storing all
possible combinations of shifts for that string.
Additionally, the matrix would require additional logic
to perform the comparison and swapping operations
required for sorting its contents.

To avoid the construction of such matrix consider
the following: once the matrix is sorted, the last,
column denoted as L in Figure 1, corresponds to the
output string. Note that the string L is a permutation of
the original input string were each character of this
output string is a prefix character of the string F in
Figure 1. Also note that the string F is a sorted version
of the string L and thereby, a sorted version of the
input string. For this reason, it is only neccesary to sort
the input string to get the last column of the sorted
matrix. However, a single sorting iteration might not
be enough to get the same the whole matrix sorted. If
there are identical characters in the input string, then it
is neccesary to replace those characters with their
suffix character and to sort again as any times as
necessary until identical characters are not present. It is
important to say that the sorting is done by each group
of identical characters. Those that are not equal remain
in their position. In this way, we can recover the output
string by only decreasing one unit to these index
values. For example, applying the BWT to the string
(D,R,D,O,B,B,S) requires two sorting iterations. First, it
is necessary to remember the original index of each
character: ((0,D),(1,R),(2,D),(3,O),(4,B),(5,B),(6,S)). After a
first sorting iteration, the resulting string is
((4,B),(5,B),(0,D),(2,D),(3,O),(1,R),(6,S)). Replacing the co-

Figure 1. To the left: Matrix built with shifted strings of the
original string. To the right: Sorted Matrix with L as the output
string.

 rresponding suffix characters where there are identical
characters, the following string is obtained:
((4,B),(5,S),(0,R),(2,O),(3,O),(1,R),(6,S)) which should be
sorted again to get: ((4,B),(5,S),(2,O,),(0,R),(3,O),(1,R),(6,S))
which is now fully sorted.. The output string
corresponds to the indexes (3,4,1,6,2,0,5) and that
corresponds to the string (O,B,R,S,D,D,B). The key or
index, where the first character of the original string is
located, in this case it is equal to 5.

This method is simpler and less expensive in
memory resources compared with the direct
implementation of BWT. Standard sorting algorithms
have around or slightly less than O(Nlog(N))
complexity [2]. Their aim is to reduce the
computational cost O(n2) obtained by burble sort or
any other simple sorting method. In [5] is reported that
a sorting algorithm based on suffix tree structure can
be implemented with O(n) complexity, specifically for
the problem of suffix sorting. A wavesorter algorithm
described in [4] has O(n) complexity as it needs 4n
steps to sort a string using a single register array. In
[2], a novel sorting method based on suffix trees data
structures is presented. It also describes briefly an
implementation for VLSI technology. However, the
proposed architecture requires a large amount of
storing memory.

Figure 2. Wavesorter block for 8 data.

2.2. The wavesorter approach

In [4], it is described an FPGA implementation based
on wave sorting algorithm proposed in [5]. The
wavesorter consists of a group of slightly modified
bidirectional shift registers, see Figure 2. The registers
can perform shift-right and shift-left operations to store
their actual value to the next left or right adjacent
register. These registers are grouped into pairs by a
comparator block that swaps them if a ‘less than’
condition is met. The architecture reads the input
string, character by character, from memory and stores
each character in the wavesorter.

Proceedings of the 2005 International Conference on Reconfigurable Computing and FPGAs (ReConFig 2005)
0-7695-2456-7/05-$20.00 © 2005 IEEE

Figure 3. Parallel sorting comparing and swapping in a single sorting iteration.

Every time a character is read, a shift-right operation is
performed followed by a comparison operation. When
all the characters from the input string are read, a
partial sort of the string is found in the registers. To get
a complete sort, the string is shifted out by changing
the shift direction to the left. When the last character
exits, the output string is fully sorted.

2.3. Parallel Sorting strategy

To improve the wavesorter approach, a second level

of 2-input comparators were added to the parallel
architecture based on shift registers. These shift
registers are similar to those used on the wavesorter
approach. Assume that there are n characters stored in
a register array, with n being an even number. The
adjacency between each two register is enumerated as
shown on the left of Figure 3. Registers with odd
adjacency number will be referred as odd adjacency
registers. Registers with even adjacency number will
be referred as even adjacency registers. Comparisons
and swaps are performed only between odd adjacency
registers. If the array is not sorted yet, a comparison
and swap is performed only between even adjacency
registers. If the array is not sorted, then new
comparisons and swaps are performed again by
switching between the odd and later between the even
adjacency registers until the array is fully sorted.
Figure 3 shows an example where comparisons and
swaps are performed alternating between odd and even
adjacency registers.

In figure 3, dotted lines point out that all
comparisons and swaps performed to the registers are
performed in parallel. In this way, it is possible to
perform parallel comparisons and swaps by following
the order in which the registers are compared, first odd
registers and then even registers. Thus, for an array of

n data, the number of steps required for a sorting
iteration is n-1. This number of steps can even be
improved by connecting the comparators used with the
odd adjacency registers to the comparators used with
the even adjacency registers, as shown in Figure 4.
Then, the total number of steps for sorting the array is
at most n/2. This sorting strategy will be referred as
Parallel sorting strategy.

To make a fair comparison of the parallel sorting
strategy against wavesorter strategy in terms of the
total number of required steps to sort an array, it is
necessary to consider the steps used to read data from
memory and the steps required to store the sorted data
back to memory. The proposed approach is based on
the same structure of the registers array used in the
wavesorter strategy. With this kind of array, data can
be stored in the array by sending a datum to the first
register and later, when the second datum is sent to the
first register, the value on the first array is shifted to
the second register. Thus, for every datum sent to the
array to be stored, values in registers are shifted to their
respective adjacent registers. This process requires n
steps. The same number of steps is required to take
data out from the array. This approach allows storing a
new set of data in the array while the previous set is
being sent back into the memory.

As mentioned in section 2, suffix sorting might
imply more than one sorting iterations. If k sorts are
required, then the parallel sorting requires to ((n+n/2) *
k + n) to sort an array of n data. Thus total number of
steps required can be obtained by the following
equation:

)1(1
2
3),(





 += knknf PS

steps

Proceedings of the 2005 International Conference on Reconfigurable Computing and FPGAs (ReConFig 2005)
0-7695-2456-7/05-$20.00 © 2005 IEEE

Figure 4. Parallel sorting with two levels of comparators performed in one iteration.

For the wavesorter approach, the authors report the
following number of steps to solve the suffix sorting
problem:

())2(12),(+= knknf WS

steps

The parallel strategy leads to a significant reduction
of about 30% compared to the wavesorter approach.
Furthermore, in additional sorts the necessary number
of steps for sorting is equal to the number of characters
in the biggest group of identical characters divided by
2 (remember that an additional sorting is implied if
groups of identical adjacent characters appear in the
array). This implies that in practice, it is possible to
reduce more than 30 % the number of steps to solve the
suffix problem. Experimental results confirm this.

3. Proposed Architecture

This section describes the proposed parallel

architecture for suffix sorting. Xilinx’s System
Generator v6.3 for Simulink and ISE v6.3. were used
to implement the architecture.

3.1. The parallel sorting block

As it was explained in section 2.3, it is possible to

perform a sorting iteration in a single step. The input of
the first level of comparators is read directly from the
registers and its outputs are then used as inputs for the
second level. The output of second level of
comparators is written back to the registers so that a
new sorting iteration can be started in case the array is
not fully yet. A number of multiplexers are used to
select the input for the registers. These inputs can be
selected form the upper adjacent register or the output
of the second level of comparators. Figure 5 shows a
block diagram for the proposed parallel sorting block.

For the sake of clarity, the design shown has only 8
registers. The first register has a direct input that comes
from the memory. A data is read from memory and
sent to the first register in the block every clock cycle.
When the storage is finished, signals of multiplexers
change to ‘0’ and then, in the following clock’s cycles,
the sorting is performed. When sorting is finished,
signals of multiplexer change again to ‘1’ and then,
sorted data is read from the block through the last
register that is connected to the output port.

Figure 5. Sorting block for 8 data.

3.2. The comparator block

An underlying block in the parallel sorting block is

the comparator block used to build the first and second
level of comparators. The comparator block is shown
in Figure 6. The inputs of this block are: (1) a signal
that enables or disables the comparison, (2) datum a
and (3) datum b. Their outputs are: (1) an equal flag

Proceedings of the 2005 International Conference on Reconfigurable Computing and FPGAs (ReConFig 2005)
0-7695-2456-7/05-$20.00 © 2005 IEEE

signal that indicates if data a and b have the same
value, (2) an swp flag signal that indicates if swapping
was performed, (3) datum A and (4) datum B with the
corresponding value whether a swapping was
performed or not.

The sorting is finished when all swp flags are set to
‘0’, i.e. not swapping was performed in the first or
second level of comparators. Equal flags are used to
identify if there are still groups of identical data, in
such case a suffix substitution and further sorting are
required. These equal flags are used to identify these
groups and then, for the next sorting, enable the
appropriate comparators. The rest of data should
remain without changes.

Figure 6. The comparator block.

3.3. Memory and registers

The general memory architecture has an 8-bit serial

input port. An extra bit is used to create a sentinel
character, namely ‘$’. This sentinel character has the
decimal value 511 which is bigger that any other
ASCII character and is used to prevent an infinite
sorting cycle. For example, the string “aaaaaaa” is
sorted already, but the architecture’s control realizes
that a suffix substitution is still needed. To avoid this
problem, a sentinel character was added as follows:
“aaaaaaa$”, then the suffix substitution will be
“aaaaaa$a”, where only the first 7 characters will be
sorted since the character in positions 7 and 8 were
different and do not need to be sorted again.

When a datum is transmitted to the parallel block, a

binary number of 7 bits that represents the address of
the data in memory is concatenated. The registers of
the parallel sorting block have a word length of 16 bits
where the first 9 refer to the ASCII value of the
character, and the last 7 are used to store the original
memory address. Thus, in suffix substitution it is only

replaced the corresponding suffix value but without
deleting the original address of the data.

3.4. Architecture description

Figure 7 shows the proposed architecture. An input

string of n data is stored in memory through the serial
port input. Once data is stored in memory, they are
transferred to the parallel registers of the sorting block
to begin the sorting process. If the control detects that
still there are identical data, it gets the address of the
data that are being taken out from the sorting block.
This means taking the 7 most significant bits of the last
register. The number of sorts is added to this number to
obtain the correspondent suffix data. This new address
is sent to memory to obtain the suffix data that is sent
to the parallel sorting block.

While data are being read from the sorting block,
suffix data are sent from memory back to the sorting
block, thus a new sorting iteration can start. This
iteration continues until data are sorted and no groups
of identical data remain. Then data from parallel
sorting block is read with shifting operation again but
instead of adding the sorts counter, address are
decreased by one. The datum read from memory is sent
directly to one of three output ports of the architecture.
Figure 7 shows the three serial output ports of the
architecture. The second one is a 1-bit flag that
indicates with ‘1’ that the signal of the third output is
the final result and with ‘0’ if else. The first output port
is 1-bit flag that indicates which character at the output
corresponds to the key.

4. Experimental results

A Virtex 2 xc2v2000-6bf957 was used for the

FPGA implementation. The parallel sorting
architecture works with strings of 128 characters, 127
characters plus the sentinel character. The 128 number
was chosen to take advantage of using in full the
binary numbers required to address data, in this case 7
bits. The Place&Route report for this implementation
is presented in Table 1.

To perform the experiments, 9 random strings of
127 characters were extracted from this text were used
as inputs to test the proposed architecture. Results are
shown in Table 2 where the performance is compared
against the wavesorter approach. Equation 2 was used
to calculate the number of steps needed by wavesorter
approach. The number of cycles and the maximum
clock frequency are included.

Proceedings of the 2005 International Conference on Reconfigurable Computing and FPGAs (ReConFig 2005)
0-7695-2456-7/05-$20.00 © 2005 IEEE

Figure 7. Parallel Sorting Architecture.

The wavesorter approach was implemented for an
array of 100 data on a Virtex XCV300-4 BG352 and
runs at a frequency of 45 MHz. This implementation
used an 88% of slices from a total of 3072 which
makes a usage of 2703 slices.

Table 1. Place & Route report

Device Resources
xc2v2000-6bf957 Usage/Total

Usage
(%)

External IOBS 19 / 624 3 %
RAMB16s 1 / 56 1 %

Slices 4316 / 10752 40 %
BUFGMuxs 1 / 16 6 %

Max. path delay: Max. Clock Frequency
19.351 ns 51.67 MHz

In addition, Table 2 shows the results of running the

parallel sorting. The total number of cycles used by
parallel sorting architecture was obtained by
multiplying 129*(sorts+1) and adding the total number
of cycles from the second column. When the number
of cycles per sort is equal to 1, the control detects that
data is already sorted and continues with substitution
stage. Last row in Table 2 shows the results of running
an especial case where all 127 characters have the
same value. It shows the ability of the control to
identify that data are sorted and that there is not need to
spend more cycles and starting thus the suffix
substitution. The wavesorter approach needs to
perform the entire sequential storing and taking out of
data to perform the sorting without taking advantage of

this kind of input. The comparison shows a reduction
in the number of cycles in more than 40%.

5. Conclusions

We have presented an architecture that implements
the BWT transform based on a parallel sorting block.
This approach reduces more than 40% the number of
cycles required to perform the complete task compared
with previous solutions. This task includes the solution
of the suffix sorting problem and the generation of the
output string corresponding to the BWT. The proposed
architecture can be scalable to more than 128
characters without significant changes on the control
and sorting blocks.

Future work includes the implementation of a new
storing strategy that allows a reduction in the latency
associated with sequential access of data. Also,
pipeline registers can be between the two levels of
comparators to reduce the critical path delay and thus,
increase the maximum frequency.

A full implementation of a BWT compression
algorithm is under way; this involves the integration of
the proposed architecture with Move to Front, Run
Length Encoding and Entropy Encoder blocks.

6. Acknowledgments

Figure 1 and figure 2 were taken from [6] and [4]
respectively. We want to thank to anonymous
reviewers whose comments were useful to improve this

Proceedings of the 2005 International Conference on Reconfigurable Computing and FPGAs (ReConFig 2005)
0-7695-2456-7/05-$20.00 © 2005 IEEE

work. This work is in part supported by a grant from
CONACYT under No. 189903.

7. References

[1] P. Fenwick, "Block Sorting Text Compression - Final

Report", Technical Report 130, Auckland, New
Zealand, ISSN 1173-3500, April 1996.

[2] D. Baron and Y. Bresler, “Antisequential Suffix Sorting
For BWT-Base Data Compression”, IEEE Transactions
on Computers, Vol. 54, No4, April 2005.

[3] M. Burrows and D.J. Wheeler, “A Block-Sorting
Lossless Data Compression Algorithm,” SRC Research

Report 124, Digital Systems Research Center, Palo
Alto, Calif., May 1994.

[4] A. Mukherjee, N. Motgi, “Prototyping of Efficient
Hardware Algorithm for Data Compression in Future
Communication Systems”, Proceedings of the 12th
International Workshop on Rapid System Prototyping,
(RSP’01), IEEE, 2001.

[5] M. Effros, “PPM Performance with BWT Complexity:
A Fast and Effective Data Compression Algorithm”,
Proc. IEEE, vol. 88, no. 11, pp. 1703-1712, Nov. 2000.

[6] M. Nelson, “Data Compression with the Burrows-
Wheeler Transform”, Dr. Dobb’s Journal, September,
1996.

Table 2. Results for the parallel sorting architecture over 10 tests.

 Max. Frequency wavesorter 45 MHz. Device Virtex xcv300-4 bg352

 Max. Frequency Parallel Sorting architecture 51.67 MHz. Device Virtex 2 xv2v2000-6bf957

 String Length = 128 characters (127 + sentinel)
Total cycles / time (ms) for BWT

Sorts Cycles per sort wavesorter Parallel sorting

Improvement
Cycles / time

(%)
3 57,9,1 1024 / 22.75 583 / 11.28 43.06 / 50.41

3 59,5,1 1024 / 22.75 581 / 11.24 43.26 / 50.59

5 60,7,2,1,1 1536 / 34.13 845 / 16.35 44.98 / 52.09

6 55,8,2,1,2,1 1792 / 39.82 972 / 18.81 45.75 / 52.76

7 61,9,2,1,1,1,1 2048 / 45.51 1108 / 21.44 45.89 / 52.88

8 58,7,3,1,1,1,1,1 2304 / 51.20 1234 / 23.88 46.44 / 53.35

8 56,5,2,1,1,1,1,1 2304 / 51.20 1229 / 23.78 46.65 / 53.55

13 54,8,2,2,1,1,1,1,1,1,1,1,1 3584 / 79.64 1881 / 36.40 47.51 / 54.29

23 56,4,2,1,1,1,1,1,1,1,1,…,1 6144 / 136.53 3178 / 61.50 48.27 / 54.95

127 1,1,1,1,1,1,1,1,1,1,1,1,…,1 32768 / 728.17 16639 / 322.02 49.22 / 55.77

Proceedings of the 2005 International Conference on Reconfigurable Computing and FPGAs (ReConFig 2005)
0-7695-2456-7/05-$20.00 © 2005 IEEE

